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The classical dielectric theory of optical properties is a local theory, and results in a dielectric constant 
dependent only on frequency. This dielectric behavior can be written as a sum over resonances, each reso­
nance occurring at a particular frequency. The spatial dispersion (i.e., nonlocal dielectric behavior) effect 
considered here is the effect of the wave-vector dependence of the resonant frequencies on optical properties. 
The additional boundary condition needed for the application of such a theory is discussed for the case in 
which the resonance is due to an exciton band and the wave-vector dependence to the finite exciton mass. 
Experimental data presented on the reflection peaks due to excitons in CdS and ZnTe exhibit gross de­
partures from the reflectivities expected from classical theory. Particularly striking are sharp subsidiary 
reflectivity spikes. The departures from classical results are all well represented by calculations based on the 
theory of spatial resonance dispersion and a simple approximation to the derived boundary condition. 

I. INTRODUCTION 

TH E well-known classical optics of nonmagnetic 
crystals is based upon the concept of local di­

electric behavior. In this approximation, the dielectric 
polarization P within a small volume of radius ro 
(Vo<5Cany wavelength involved) depends only on the 
value of the electric field inside this volume (at the pres­
ent time and in the past) and is not explicitly dependent 
on the electric field or other parameters outside the 
volume under consideration. 

The term "spatial dispersion" has been used to app]y 
to dielectric behavior for which the local description is 
not valid. In general, spatial dispersion refers to the 
wave-vector dependence of the dielectric constant. 

Implicitly contained in the supposition of local di­
electric behavior is the neglect of the transport of 
energy by any mechanism other than electromagnetic 
waves. When energy transport by other mechanisms 
must be considered anomalous (nonlocal) dielectric 
behavior results, often accompanied by new physical 
phenomena. For example, a metal in which the electron 
mean free path becomes smaller than the classical skin 
depth exhibits the anomalous skin effect.1 In this case, 
the energy transported by the electrons is, in the in­
terior of the crystal, as important as the energy trans­
ported by the electromagnetic field. 

Of all possible spatial dispersion effects, we confine 
ourselves to the one which seems to be the most radical 
in effect in classical optics, namely, the effect of a second 
mechanism of energy transport on classical optics. In 
particular, the effect of a noninfinite exciton mass on 
the reflectivity of insulating crystals near an isolated 
exciton line is investigated both theoretically (Sees. I I 
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and II I ) and experimentally (Sec. V). Section IV con­
tains a brief account of general experimental and theo­
retical problems involved in demonstrating the effect 
of spatial dispersion in the exciton region. 

II. THEORY 

The development of the theory of spatial dispersion 
in optical spectra of excitons has in great part been due 
to Pekar2,8 in a series of papers beginning in 1957. The 
nature of this theory has unfortunately been obscured 
by its formalism. In this section, the rudiments of the 
theory of spatial dispersion are developed from a simple 
classical point of view. 

Let an electric field Eoeik'xe~icct exist in a crystal. A 
polarization wave 

P = QT «(k+27rG, «)e2™G-*)E0e*#x*-*wS (1) 
G 

where G is a reciprocal lattice vector and a(k+27rG, ay) 
is a second-rank tensor function of k+27rG and co, will 
accompany the electric field. By restricting considera­
tion to sufficiently low energies [ax^c/ (lattice constant)] 
the terms of nonzero G introduce only renormalization 
corrections which can be absorbed in a(k,o)). In this 
approximation, 

P*(co) = «(*>W)Ek(a>) (2) 

and a(k,u>) can be regarded as the frequency- and wave-
vector-dependent polarizability tensor. I t describes the 
polarization response in a "Gedanken" experiment for 
which k and co are independently specified. 

By "the effects of spatial dispersion" we mean the 
effect of the wave-vector dependence of a in (2). Classi-

2 S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 33, 1022 (1957) [trans­
lation: Soviet Phys.—JETP 6, 785 (1958)]. 

3 S . I. Pekar, Fiz. Tverd. Tela 4, 1301 (1962) [translation: 
Soviet Phys.—Solid State 4, 953 (1962).] 
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( a ) CLASSICAL DIELECTRIC 

( b ) SPATIAL DISPERSION 

^ FIG. 1. The spring and charged mass-point models of a classical 
dielectric, (a); and one exhibiting spatial resonance dispersion, 
(b). These models represent scalar analogs to the actual vector 
equations. The directions of P and x are indicated. 

cal local dielectric theory is obtained simply by setting 
k = 0 i n ( 2 ) . 

For a given wave vector, insulating crystals are 
characterized by polarizabilities of the form 

«(k,co) = £ -
aj(kW(k) 

i o)j2(k) — co2—io)Yj(k) 
(3) 

by virtue of the fact that the polarizability obeys a 
Kramers-Kronig relation at any fixed wave vector. [The 
summation in (3) should be understood to include the 
possibility of integration over the index j.~] A conven­
tional isolated optical absorption line is associated with 
an isolated resonance, a single term L for which co,-(0) 
is isolated from the other zero wave-vector resonant 
frequencies. 

The presence of resonances in (3) prevents a(k,o>) 
from being usefully expanded in powers of k. Instead, 
both the numerator and denominator (of each term) 
must be expanded. 

To keep the physics from disappearing in a morass 
of tensor notation, the problem will be simplified. First, 
the frequency will be chosen near a particular resonance 
in (3), and the sum over all other oscillators will be 
lumped into a frequency- and wave-vector-independent 
background dielectric constant e. Second, the wave-
vector dependence of the phenomenological damping 
term V will be ignored. (Indeed, the calculations of 
Sec. IV show that the value of T is small enough to be 
ignored in some experiments.) Third, a direction of k 
is chosen such that a has one principal axis parallel to 

k and the others perpendicular to k in directions in­
dependent of the magnitude of k (e.g., k is in a (100) 
direction in a cubic crystal). Fourth, only the zero and 
second-order terms in the expansion of a(k) and o)j(k) 
will be retained. The first-order terms will vanish in a 
crystal having inversion symmetry and will be small 
under much broader circumstances. For E polarized in 
a given principal direction, (2) is approximated by 

P*(«) = 
"eo—1 (ao+a2k

2)o)0
2 ~] 

+ E*(co) . (4) 
L 4TT u0

2+Bk2-a>2-ia>TJ 

The solutions (periodic in space and time) to Max­
well's equations for the dielectric defined by (2) are 
found by solving the eigenvalue problem, 

/eo2\ co2 

& 2 E k -k(E k -k) = ( - ) D k ^ - [ E k + 4 7 r P k ] . (5) 
\c2/ c2 

Under the approximations described, the solutions of 
(5) divide themselves into longitudinal solutions (Ek 

parallel to k) and transverse solutions. 
When (4) is substituted into (5), the transverse solu­

tions to (5) are determined by the condition 

c2k2 4:ir(a0+a2k
2W 

-= e0-
u0

2+Bk2-a>2-iG>T 
(6) 

For real frequencies, k and n will be in general complex. 
In classical optics, a2—B—0. For a given frequency, 

(6) is linear in k2, and there are two roots for k. These 
roots are the complex numbers, k and —k one referring 
to a right-running and one to a left-running solution. 
For a given (principal) polarization, frequency, and 
direction of propagation only one transverse mode exists. 
The case B = 0, a29^0 is rather similar to the classical 
case. Although there will be some effects of the wave-
vector dependence (in particular, when ce0=0, a "for­
bidden" absorption line will be seen if a ^ O , a line which 
would be absent in classical optics), (6) remains linear 

FIG. 2. The frequency wave-vector dispersion relation for the 
transverse normal modes of light coupled to a classical dielectric 
(graph at left) and a dielectric having spatial resonance dispersion 
(at right). No damping is included. The normal mode wave vectors 
are in either case either purely real or purely imaginary, and are 
plotted to the right or left accordingly. The dashed lines show the 
dispersion relations for a0 = zero; the solid lines for a finite a0. 
Parameters have been chosen to display clearly the differences 
between the models. 
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in k2, and no profound change of the electromagnetic 
equations results. 

The case B^O, a 2 = 0 is much more interesting. For 
this case, given w, (6) is quadratic in k2. There are in 
this case two transverse solutions propagating in each 
direction for a given principal polarization and 
frequency. 

That there should be two propagating modes is easily 
seen by examining a mechanical model of a classical 
dielectric, and comparing it to a model which exhibits a 
nonvanishing B. The model of Fig. 1 (a), in a continuous 
limit, defines a classical dielectric. Figure 1 (b) defines a 
dielectric with By^O. The transverse normal modes for 
the two systems are shown in Fig. 2. The equations of 
motion for the local oscillator polarization Pex(^) in the 
continuous limit (but without damping) are of the form 

VACUUM 

1 d2Pe*(x) 

too dt2 
\-Pex.(x)=CLoE(x), (7a) 

1 d2P^(%) d 2 P e X 

'-P*x(x)-B -=a0E(x), (7b) 
o>(T dt2 dx2 

for the two cases, respectively, for transverse waves 
propagating in the x direction. If E(x) and P(x) have 
the forms Ekexp{_i(kx—cct)'} and Pex,/b exp[jL(kx—to/)], 
then the exciton contribution to the polarizability 
Pex hi Eh determined from (7b) is the second term on the 
right in (6) for the case a 2 = r = 0. 

When springs between the polarization oscillators 
are included there are, even for a = 0, two methods of 
propagating energy at a given frequency, one " electro­
magnetic' ? and one "mechanical." The coupling due to 
a, of course, mixes the modes, but does not change their 
number. 

The wave-vector dependence of the denominator in 
(6) has an obvious interpretation. The normal mode of 
the crystal to which the light couples clearly has the 
dispersion relation, 

im2 

o)2 = o)0
2+Bk2 or fiQ)~ho)Q-{ . (8) 

2 w* 

For the case of a dielectric resonance due to an exciton 
band, m* is by definition of the exciton mass. 

The rest of the present paper concerns, of all spatial 
dispersion effects, only those effects due to the nonin-
finite "mass" (nonzero B). To distinguish these effects 
from more general ones, we shall refer to them as being 
due to "spatial resonance dispersion." 

III. BOUNDARY CONDITIONS 

We consider here the effect of the wave-vector de­
pendence of the energy of an isolated pole of the dielec­
tric constant on the optical reflectivity of a crystal. Only 
the simplest case experimentally attainable is treated, 
normal incidence in a principal direction. For normal 
incidence, all wave vectors involved in the problem are 

k„E, 
CRYSTAL 

K21 E2 

FIG. 3. A schematic diagram of the normal incidence reflectivity 
problem. The arrows denote the wave directions, and the different 
E's the wave electric field amplitudes. 

collinear. To appreciate the importance of the choice of 
a principal direction, it must be recalled that a finite 
a0 in (4) requires an "oscillator" having vector proper­
ties. In a cubic crystal at k = 0 , such an oscillator is 
degenerate, transforming like x, y, z. Away from k = 0 , 
the degeneracy splits. In a (100) or (111) direction, the 
form of the degenerate perturbation theory splitting is 
determined from symmetry considerations. The split­
ting in these directions is into purely longitudinal and 
purely transverse modes. At normal incidence in a 
principal direction, a single transverse polarization can 
be chosen, the longitudinal mode does not enter, and the 
resultant wave equation and boundary value problem 
are one dimensional and scalar. 

The model dielectric under consideration has a dielec­
tric constant 

e(&,o>)=e0 -
47raoo>o2 

coo2—co2+ (fik2cx)o/m^) — iooT 
(9) 

in a frequency region near m. (This dielectric constant 
applies to a case in which the exciton polarization and 
the electric field are parallel, and both perpendicular to 
k. In a uniaxial crystal, the electric field must, in addi­
tion, be either parallel or perpendicular to the optic 
axis.) The wave-vector dependence of eo is neglected 
(Sec. II) . 

The reflectivity boundary problem to be solved is 
illustrated in Fig. 3. Unlike the classical problem, there 
are two right-running waves in the medium. The usual 
Maxwell boundary conditions on E, B, D, and H must, 
of course, be satisfied. These conditions become 

Eo+ER = E1+E2, 

EQ—ER=niE1+n2E2, 
(10) 

where ni=cki/o), n2=ck2/o), and ki and k2 are the 
two "right-running" roots of the dispersion relation 
c2k2/o)2=e(k,o}). Substituting (9) into (5) [equivalent 
to (6)2, n\2 and n2

2 are found to be given by 

I f / co2 To)\(mc2)o)ol 
n2 = -\ e o - 1 i—) 

2L \ wo2 coo2/ ho>2 J 

f i r / co2 To)\mc2o)oJ 
± H €o+(l i~ ) — 

U L \ wo2 wo2/ ft"2 J 

+47ra:o-
fla>2 

( ID 
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For the classical case of one mode of propagation in 
the medium, (10) can be solved for the reflection coef­
ficient ER/EQ. In the case of two modes of propagation, 
these equations are not sufficient to determine a solution; 
an additional boundary condition is needed. 

This need of an additional boundary condition is 
evident in comparing the dielectric models of Fig. 1 and 
Eq. (7). In the continuum limit, the differential equa­
tion of motion of P is of zero order in % for Fig. 1 (a), but 
second order for Fig. 1(b). For the second-order equa­
tion, a boundary condition on P at the termination of 
the medium is needed (just as at the end of a continuous 
elastic bar). This boundary condition is specified by the 
manner of termination in the case of an elastic medium 
(e.g., a bar with a free end has the boundary condition 
that the strain vanish at the end). 

The oscillators by which the dielectric polarization 
P can be described are abstract. The problem is to find 
the appropriate boundary condition for these oscillators. 
The optical excitation of direct excitons results in dis­
crete exciton absorption lines due to isolated oscillators. 
The boundary condition on P e x , the contribution of a 
single exciton mode to the dielectric polarization, will 
be investigated for one of these transitions. 

Several previous investigations of boundary condi­
tions3-5 have been made, yielding three different bound­
ary conditions. One of these (Ref. 4) is incorrect. The 
difficulty with the other two is that each is appropriate 
to a model which does not contain sufficient generality 
to apply to the real physical world. 

The exciton as a quantum-mechanical particle can 
be specified by its internal state and its total wave 
vector k. Given a particular internal state, the eigen­
value equation for the exciton is 

E(k)f(k) = 3fr(k), (12) 

where E(k) is the exciton band energy. For a given 
direction of k, E(k) is expandable in powers of k. 
Expanding around the minimum of E(k) (presumed at 
k — 0) and considering only waves propagating in the 
x direction, the free exciton effective-mass equation 
[valid for | ( J S - £ 0 ) / ^ o | « l ] 

/ h2 d2 \ 

+Eo\Kx)=m*), 
\ 2w* dx2 / 

(13) 
h2k2 

E(k)~EQ+ , 
2m 

is obtained as the Fourier transform of (12). 
If a (perfect) crystal exists only for x> 0, a free exciton 

incident from the right will be totally reflected back to 
the right by the crystal boundary. The exciton wave 

4 V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 34, 1593 (1958) 
[translation: Soviet Phys.—JETP 7, 1096 (1958)]. 

6 J. J. Hopfield, Ph.D. thesis, Cornell University, 1958 (un­
published). 

function, for x>0 but well away from the boundary, 
must then have the form 

where <p is a real function of the energy. 
To calculate <p, a microscopic understanding of the 

forces which cause the exciton to turn around is neces­
sary. The investigation of these forces in the absence of 
a coupling between the light and excitons for two ideal­
ized cases follows. 

A. Frenkel Excitons with Nearest-Neighbor 
Interactions 

For the one-dimensional problem under consideration, 
represent the crystal by a line of equivalent atoms, 
each of which has a single excitation state and coupling 
to its nearest neighbors. The linearized exciton Hamil-
tonian, in terms of the operators bi+(bi) which excite 
(de-excite) atom i is 

H= f [_Abtbi-J(bi+lni-\-btbi+l)~]. (15) 

If the sum extended also to all i < 0 , the crystal would 
fill all space and plane-wave states would be eigenstates. 
For the truncated crystal, the normal mode creation 
operators are of the form 

£ [eik{xj+a)__e-ik(xj+a)libj+ ^ (16) 

where a is the lattice constant, and have, of course, the 
plane-wave exciton energy 

Ek=A-2Jco$ka. (17) 

The exciton "wave function" as a function of position 
is, from (16), 

xp(Xi) = eik(.xj+a)_e-iJc(x]-+a) ^ (Jg) 

and defined only at lattice points. In the exciton ef­
fective mass approximation, Xj can be replaced by a 
continuous function $(%). All the normal modes of the 
semi-infinite lattice obey the "boundary condition'' 
^(x) = 0 when extended outside the crystal to the point 
x= — a. For long wavelengths, the boundary condition 
is approximately 

*(0) « « ( # / * * ) (0), (19) 

or, more crudely, 
* ( 0 ) « 0 . (20) 

Equation (20) is the boundary condition calculated by 
Pekar.3 

J t is, of course, possible to add other terms to (15) 
to terminate the crystal. For example, A could be modi­
fied for atom zero. Such a modification still leads to a 
boundary condition of the general form of (19) for small 
k} with a multiplied by a numerical factor. 
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This case is seldom literally applicable, but demon­
strates clearly the origin of the exciton boundary 
condition. 

B. The Case of Wannier-Mott Excitons 

Consider a simple hydrogenic exciton in its ground 
(15) state. The interaction between the exciton and its 
image charge results in a potential energy of the exciton 

V(x)--
1 / e - l 

\e+l / \x/ ' 
(21) 

where a is the exciton Bohr radius, EB the exciton 
binding energy, and e the static dielectric constant. 
Since e is greater than 1, the force is repulsive. Shorter 
range effects of "overlap" with the surface, surface 
field, etc., also contribute to the effective potential. 

If all the effects of the surface could be represented 
by a potential U(x) for the exciton, U(x) would have 
to be sufficiently repulsive to cause the exciton to be 
totally internally reflected. In such a case, the exciton 
Schrodinger equation and boundary condition 

h2 dV 
\-ho)0\f/ (x) + U (x)\f/ (x) •= hu\p (x), 

2m* dx2 (22) 

^(aO = 0, * < 0 , 

completely specify the reflection of the exciton at the 
surface/For \E~EQ\<<^EB, the classical turning point 
is well removed from # = 0 . In this energy region, the 
energy region of real interest, the potential is character­
ized by exciton parameters, and is independent of de­
tailed knowledge of the crystal surface. 

An exciton is the "particle'7 of the classical polariza­
tion field in the same sense that the photon is the par­
ticle of quantum electrodynamics. The exciton wave 
function \p(x) is in reality a boson field operator. The 
operator Pex(#) which gives the exciton contribution 
to the polarization field is proportional to ^(x)+\//*(^). 
Replacing co by i(d/dt) in (22), the equations of motion 
of P e x in the absence of an electric field for frequencies 
| (co—co0)/coo|<Kl, is given by (23). 

fd2 hoio d2 co0U(x)-] 
—+coo 2 +2 

Ldt2 ni* dx2 h 
Pex(*,0 = 0 (23) 

= «oco0
2E(x,0. (24) 

The presence of an electric field simply adds a term 
ao)0

2E(x,t) as in (24), to lowest order. Semiclassical 
radiation theory is now recovered by reinterpreting 
the P and E operators in (24) as classical fields. 

Two simple cases emerge. First, for m* —» oo, the 
left-hand side of (24) expresses the classical polariza-
bility of a medium whose resonant frequency changes 
near the surface. Second, for U(x) = 0, the polariza-

FIG. 4. Energy ver­
sus x for the poten­
tial U(x) (solid line) 
and the infinite bar­
rier approximation 
(dashed line). 

bility determined by (24) is that represented by the 
second term on the right in (9) if damping is neglected. 

The boundary condition problem can now be ade­
quately described. For case A, U(x) — 0. Approximate 
boundary condition (20) implies jPex(0) = 0. If this is 
the case, the two propagating modes must sum to no 
exciton polarization at x = 0 , and the additional bound­
ary condition is therefore 

PeX 1+P e X 2=0 or (wi 2 -eo)Ei+(^2 2 -eo)£ 2 =0. (25) 

A slightly more complicated boundary condition can be 
derived for boundary condition (19). 

For case B, U(x) is not equal to zero, and a much 
more complicated equation must be solved, namely, 

(26) 

x<0: 

x>0: 

d2E 1 d2E 

dx2 c2 dt2 ' 

d2E 1 d2 

= (e0£+47rP e x) , 
dx2 c2 dt2 

Equation (24), 

subject to the boundary conditions 

E(0J) = E(0+), 

BE dE 
—(0_) = — ( 0 + ) , 
dx dx 

Pox=0, tf<0, 

(27) 

and the asymptotic conditions best described by looking 
at Fig. 3. The solution is then determined since U(x) 
is sufficiently singular to eliminate the exciton P e x a t 
the boundary. 

The solution of (26) and (27) is annoyingly difficult. 
The chief physical effect of the repulsive U(x) is to 
cause the free exciton to be totally reflected from an 
effective barrier a finite distance inside the surface. One 
is tempted, therefore, to replace the potential U(x) by 
an infinite potential barrier a finite distance / inside the 
crystal as indicated in Fig. 4. At and to the left of such 
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a barrier, the boundary condition P(l) = 0 will apply. In 
this case, there will be three spatial regions, x<0, 
0<x<l, and %>l. The first two are characterized by 
classical indices of refraction 1 and \Ao> respectively. 
The third region is anomalous. The usual Maxwell 
boundary conditions plus the Pex=0 boundary condi­
tions determine the connection between the second and 
third regions. 

The / which best represents (27) is not clear. A guess 
might be the I for which the energy in (22) is the same 
as the exciton-phonon interaction energy 27rao^coo/eo. 
This yields the estimate that / is about twice the exciton 
Bohr radius for all semiconductors. 

The reflection coefficient R—EB/EQ can now be 
calculated. I t is conveniently written 

J ? = ( l - » * ) / ( l + » * ) , (28) 

where n* is an effective index of refraction. For the case 
A with boundary condition (20), 

wt = {nifi2+ €0)/ (ni+ n2), n*=n^. (29) 

Case B, with the repulsive barrier approximation, has 
the reflectivity the same as it would be for a classical 
dielectric interface having three layers of n=l, \Ao, 
and n\ respectively. One finds for this case wt is given 
by (29), but n* for (28) is given by 

r(nf+n)e~2iknl-n+ni'] 
n*=n\ . (30) 

L(»++»)e-2**nZ+»—nU 

IV. INTERPRETATIONAL PROBLEMS 

Several attempts have been made6 - 8 to observe the 
effect of spatial resonance dispersion on optical proper­
ties near exciton absorption peaks. One of the striking 
properties of spatial resonance dispersion is the pre­
dicted existence of additional propagating waves in a 
crystal. The interference between the two propagating 
waves (when classical optics would have produced but 
one wave) should, in principle, produce observable 
effects on the optical transmission. If all multiple re­
flection effects are neglected (and all classical inter­
ference effects therefore impossible in isotropic materials 
for normal incidence on a plane parallel slab), two kinds 
of oscillatory effects should be observed. One is a periodic 
modulation of the transmission at fixed energy as a 
function of the thickness. The other is a periodic modu­
lation of the transmission at fixed thickness as a func­
tion of the energy due to the variation of the two in­
dices of refraction with energy. These effects are at­
tractive ones to investigate, since their existence can 

6 1 . S. Gorban' and V. B. Timofeev, Doklady Akad. Nauk 
S.S.S.R. 140, 791 (1961) [translation: Soviet Phys.—Doklady 
6, 878 (1962)]. 

7 M. S. Brodin and S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 38, 
74 (1960); 38, 1910 (1960) [translations: Soviet Phys.—JETP 
11,55 (1960); 11, 1373 (I960)]. 

8 M. S. Brodin and M. I. Strashnikova, Fiz. Tverd. Tela 4, 
2454 (1962) [translation: Soviet Phys.—Solid State 4, 1798 
(1963)]. 

be theoretically predicted independently of the precise 
boundary condition employed. 

This mode of experiment suffers from one chief de­
fect. In order to obtain an interference effect, it is 
necessary for both modes of propagation to traverse 
the crystal and to arrive at the back with finite ampli­
tude. In order to obtain this, it is necessary that the 
collision time of a bare exciton be comparable to or 
greater than the exciton transit time for the crystal used. 
For typical semiconductors, the characteristic velocity of 
the excitons involved is about 106 cm/sec. [This velocity 
is no greater than 2irh/'XvacmeK or ((47ra0/eo)(^coo)wex)1/2, 
whichever is greater.] Since characteristics relaxation 
times (collision times) are of the order of 10_11-10~13 

sec, crystals having thicknesses of the order of 10-
1000 A are necessary. 

The experiments performed on CU2O by Gorban and 
Timofeev6 in which an interference effect as a function 
of thickness is reported cannot, we believe, be viewed 
as a verification of the theory. The oberved linewidth 
gives in this case an exciton collision time of about 10~12 

sec, whereas the transit time in crystals of the thickness 
used (~100 000 A) is of the order of 10~4 sec. In addi­
tion, the data show no oscillations at fixed thickness. 
I t seems likely that the observed results are an artifact 
of the indirect method of measurement. 

The experiments of Brodin and Pekar7 are much more 
likely to demonstrate the interference effects. The 
thickness of crystal investigated was of a more appropri­
ate thickness 500-3000 A. Unfortunately, there is not 
sufficient data on anthracene to make an independent 
estimate of either the mean free path or the exciton mass. 
The oscillation periods are different at the two fre­
quencies reported. 

Recent experiments by Brodin and Strashnikova8 

have shown that the dispersive and absorptive parts of 
the index of refraction of CdS (as obtained from a clas­
sical analysis of thin film measurements) do not appear 
to be quantitatively compatible. They have suggested 
that the cause of this incompatibility is spatial 
dispersion. 

The incompatibility with classical analysis seems 
quite plausible. Any effect which changes the boundary 
conditions in an energy-dependent fashion (as spatial 
dispersion does) will automatically introduce inconsist­
encies, even if only one mode crosses the crystal. To 
confirm this hypothesis, quantitative calculations would 
be necessary. 

Reflectivity experiments have one real advantage 
over other varieties of experiments for detection of 
spatial resonance dispersion, namely that thin crystals 
are not needed. For crystals several absorption lengths 
thick, the results are independent of thickness. Further, 
the reflectivity results are expected in theory to be in­
dependent of the exciton collision time as long as this 
time is sufficiently large. (This domain of r « 1 0 ~ n sec 
can be experimentally attained by the careful selection 
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FIG. 5. The normal incidence reflectivity spectrum of CdS in 
the vicinity of the first exciton peak for two different but classically 
equivalent geometries [(a) and (c)]. A classical reflectivity curve 
crudely representing these anomalies is shown in (b). 

of CdS crystals. The absence of an n—2 state in the 
dispersion curves of Brodin and Strashnikova8 suggests 
that their r was an order of magnitude shorter.) 

Reflectivity experiments also have their drawbacks, 
the chief of which is the question of what the surface 
looks like. Experimental reproducibility defines a sur­
face condition, but it is not necessarily the condition 
used, of a perfect crystal-vacuum interface, assumed for 
the theory. 

In addition, the theoretical expression for the reflec­
tivity is algebraically so complicated that one loses 
all intuition concerning the expected form of the re­
flectivity. Armed with the knowledge that, in order to 
compute quantitatively experimental results in any 
spatial resonance dispersion experiment on excitons, 
an understanding of the boundary condition at an actual 
surface is necessary, we proceed. 

V. EXPERIMENTAL OBSERVATIONS 
AND CALCULATIONS 

All experimental reflectivity spectra described here 
were taken on "good" CdS and ZnTe crystals at 1.6-
4.2°K. The spectra were measured using a Bausch and 
Lomb grating spectrograph with a linear dispersion of 
2 A/mm. Some spectra were obtained from a photo­
graphic plate, but the more detailed spectra in CdS 
were measured photoelectrically. In some experiments, 
great care was taken to keep the cone of incidence and 
angle of incidence as small as 2°. No observable dif­
ference between these experiments and experiments 
using angles of incidences 2-3 times larger was observed. 
I t is therefore believed that no qualitative (and only 
small quantitative) differences exist between these 
experiments and ideal ones performed with parallel 
light at normal incidence. "Good" crystals of CdS was 
taken to mean crystals in which the higher states of the 
excitons from the first valence band were observable in 
reflection. In really good crystals, the n=3 state is ob­
servable as an anomaly in the reflection, and the n=2 

state shows a very marked and unusual reflection peak 
(see Fig. 9). The good crystals also showed the sharpest 
structure for the reflectivity of the n==l state. Experi­
ments were performed both on ZnTe (cubic) and ZnTe 
with a uniaxial strain. Under the uniaxial stress, the 
degenerate valence band splits and becomes simple, 
while the optical properties become uniaxial. 

Reflection was always observed from as-grown faces 
with the crystals immersed in liquid helium. CdS grown 
from the vapor occurs as plates with the hexagonal c 
axis in the plane of the plates. Reflection measurements 
with k±c therefore presented no problems. For k\\c 
crystal were found which had grown faces perpendicular 
to the c axis. These faces had a width of only 10-20 ju 
so that an enlarged image of the face was arranged to 
fall on the spectrograph slit. The ZnTe crystals were 
grown from the vapor,9 and were stressed in an ap­
paratus similar to one already described.10 

Reflectivities were normalized by using a reflectivity 
calculated from the index of refraction in a spectral 
region where the crystal is transparent. 

The reflectivity spectrum of CdS in the vicinity of 
the lowest exciton (exciton A) at 4.2°K is given in 
Fig. 5(a) for light at normal incidence in a direction 
perpendicular to the c axis and also polarized perpen­
dicular to the c axis. The reflectivity of a classical oscil­
lator (width 10~3 eV, 4^0=0.0094, e0=8.1) is shown in 
Fig. 5(b). The two are rather similar, the difference 
being chiefly the small reflectivity peak at 2.55445 eV 
(marked by the arrow) not present in 5 (b), and a quan­
titative failure to agree at energies at and slightly above 
the reflectivity minimum. 

Two quandaries present themselves. First, the width 
of the classical dispersion oscillator which qualitatively 
fits the reflectivity is about 10~3 eV, whereas the width 
of the exciton state involved, as inferred from trans­
mission experiments performed in other geometries, 
must be less than 10~4 eV. Second, there occurs near the 
reflectivity minimum a sharp peak not anticipated by 
the simple classical form 5(b). I t would be tempting to 
explain the order of magnitude disagreement of the 
reflectivity line width and the transmission line width 
by assuming that the crystal is not as good, and the 
lines are broader at the surface (where the reflection is 
determined), rather than deep in the interior. This sup­
position is not really compatible with the observed 
sharpness of the subsidiary structure, nor does it 
explain this structure. 

Exciton "A" in CdS is twofold degenerate, polarized 
in the plane perpendicular to the c axis. For wave vector 
perpendicular to the c axis (k_Lc), "A" splits into a 
longitudinal and a transverse exciton, at frequencies m 
and coo, respectively. The zero of the index of refraction 
(of a transverse mode of propagation) occurs at energy 

9 R. T. Lynch, D. G. Thomas, and R. E. Dietz, J. Appl. Phys. 
34, 706 (1963). 

10 D. G. Thomas, J. Appl. Phys. 32, 2298 (1961). 
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FIG. 6. The normal incidence reflectivity spectrum of Fig. 5(a) 
in the presence of a magnetic field. Additional structure intro­
duced by the field is indicated by the arrow. 

hcoi. This energy is, within experimental error, the 
energy at which the sharp additional reflectivity struc­
ture occurs. The longitudinal energy is known from 
previous transmission experiments.11 

The reflectivity measurement in CdS was repeated 
with E_L_c, at normal incidence, the only change being 
that the wave vector (and the normal to the reflecting 
surface) was parallel to the c axis. The results are shown 
in Fig. 5(c). The extra peak at the longitudinal fre­
quency is much enhanced, and the form of the reflec­
tivity at energies above this peak is much flatter than 
that in 5(b) or 5(a). Since, in this geometry, both com­
ponents of exciton A are transverse but the subsidiary 
peak at the longitudinal frequency is very pronounced, 
the peak is presumably due to the zero of the index 
of refraction, not to the longitudinal exciton. Of par­
ticular note is the fact that 5 (a) and 5 (c) should be the 
same in classical theory, (except for the possibility of 
surfaces not representative of the bulk material). 

Additional experiments have been done which demon­
strate the sharpness of the exciton states seen in reflec­
tion. For example, Fig. 6 shows the normal incidence 
reflectivity measured with k ± c , EjLc, with a magnetic 
field of 31 000 G in the same direction as E. An exciton 
state AF, lying about 0.0013 eV below AT

n (an energy 
difference caused by electron-hole spin-spin interac­
tions), and normally not seen in reflectivity, gains an 
admixture of A T in this magnetic field. This line can be 
seen in reflection, and is marked by the arrow. I t occurs 
as a clearly visible singularity characteristic of a classical 

" J . J. Hopfleld and D. G. Thomas, Phys. Rev. 122, 35 (1961). 

oscillator of a width of about 10~4 eV, and having an 
oscillator strength of about 2 % of the main peak. 
Similar experiments have been carried out in two other 
geometries, with similar results: When weak additional 
reflection singularities are introduced (by a magnetic 
field), they are characteristic of narrow exciton states. 

Various models, of surface regions on classical dielec­
trics have been attempted to explain the apparent con­
tradiction in linewidth and the subsidiary reflectivity 
maximum. Since any transparent (nonlossy) surface 
layer will lead to a total reflection region (for vanish-
ingly small loss in the bulk material) in classical theory, 
it is necessary to postulate that the reflectivity is domi­
nated by a lossy surface region in order to keep the re­
flectivity maximum down to a value of 50%. No model 
with such a region was consistent with the experiments 
in a magnetic field, and no model not containing addi­
tional ad hoc energies produced appropriate additional 
peaks. 

If one rejects an attempt at purely classical interpre­
tation and uses instead formulas applicable to spatial 
resonance dispersion, some of the quandaries are made 
plausible. Since an undamped exciton of positive mass, 
in the presence of spatial resonance dispersion, always 
has a propagating mode, the reflectivity without damp­
ing is never 100%. Reflectivities of less than 100% in 
the classical total reflection region are therefore not 
directly indicative of linewidth, and one large stumbling 
block to the understanding of the experiments is re­
moved. Because there are rapid changes in rft and n* 
near the longitudinal frequency, this is the logical place 
for any peculiarities to occur. Strange effects can now be 
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FIG. 7. The calculated reflectivity taking spatial dispersion into 
account (but without damping) for the case / = 0 as a function of 
the exciton effective mass (in units of the free electron mass). 
For an infinite exciton mass, the classical result of total reflection 
would occur between the indicated limits. 
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introduced by a transparent (lossless) surface region. 
Mathematically necessary to these effects is a real part 
of n\ and such a real part is introduced by spatial dis­
persion. Finally, the exciton effective mass for exciton 
A is 0.9 me for k_Lc [Fig. 5(a)] and about 3-5 times 
larger for k||c [Fig. 5(c)] . A natural reason for a differ­
ence between 5(a) and 5(c) is therefore present in 
spatial resonance dispersion. 

Figure 7 shows the effect of spatial resonance disper­
sion without a surface barrier (7=0) [Eqs. (28) and 
(29)]. The €0 and 47ra0 chosen here are the same as in 
Fig. 5(a). [A phenomenological damping term can be 
added to the denominator of (9), but has no noticeable 
effects on Fig. 7 for widths less than 10~4 eV. Figure 7 
contains no damping.] The finite mass has, in these 
cases, an effect on the reflectivity maximum rather 
like an increased damping. The main reflectivity peaks 
5(a) and 5(c) do not therefore necessitate the supposi­
tion of a width an order of magnitude too large. 

Figure 8 shows the effect of a surface barrier (finite I) 
on the calculated reflectivity. The exciton mass used 
was 0.9 wo.11 A subsidiary sharp reflectivity peak is 
introduced, which falls within 10~4 eV of the k = 0 
longitudinal optical frequency. The general behavior 
of the reflectivity both above and below this peak is 
also modified. I t is clear that the experimental results 
of Fig. 5 can be well understood in terms of the effect 
of spatial dispersion with a surface barrier, if the ef-
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FIG. 9. The reflection curves for exciton A in a "good" crystal 
(59P) of CdS at 1.6°K. (a) refers to k||c, (b) to kj_c. The position 
of the n — 2 and 3 states of exciton A have been marked. The large 
peak marked B is the n — 1 state of exciton B. Notice the differences 
for these two classically equivalent geometries (both have Ej_c), 
and the unusual shapes of the reflection anomalies. 

fective surface barrier thickness / is dependent upon the 
exciton mass. As the Bohr radius of the IS exciton in 
CdS is about 27 A, the effective barrier thickness is, as 
anticipated, a few Bohr radii. 

This reflectivity peak is not the only one in CdS 
which has a nonclassical form. Indeed, every reflectivity 
peak seen in CdS for E JLc has a bizarre shape, and shows 
differences between the classically equivalent geom­
etries for k||c and k_Lc. We have chosen to analyze 
exciton "A" because of the knowledge of the masses, 
the clarity of the experimental effect, and the fact that 
this exciton state is the one in CdS most legitimately 
treated as "isolated." I t also presumably has the longest 
r. The experimentally observed reflection curves of 
exciton A for k J_c and k||c, for "good" crystals, showing 
the w = l , 2, and 3 reflection anomalies are shown in 
Fig. 9. 

Lest the reader receive the impression that the experi­
ments and calculations are unique to CdS, experimental 
measurements and calculations of reflectivities for an 
exciton peak in ZnTe are shown in Fig. 10. In order to 
avoid the theoretical complications possible due to a 
degenerate valence band, the experimental results 
shown are for a crystal stressed in a (111) direction, 
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FIG. 10. (a) The measured normal incidence reflectivity spectrum 
of stressed ZnTe for light polarized parallel to the direction of 
stress, (b) A calculated reflectivity curve including spatial dis­
persion, using the parameters indicated. 

using light polarized parallel to this direction. (In fact, 
the experimental reflectivity in this geometry is vir­
tually unaffected by the strain except for a slight 
energy shift.) No effort was made to accurately fit the 
experimental reflectivity with the calculation; the ob­
ject was simply to show the qualitative agreement. The 
two very similar curves bear no resemblance to the usual 
classical reflectivity. The usual classical rise approaching 
the resonant frequency is almost completely suppressed, 
and the spike at the longitudinal frequency becomes the 
reflectivity maximum. 

The origin of the sharp reflectivity structure at the 
longitudinal frequency has no obvious physical mean­
ing, but can be seen mathematically. In the absence of 
damping, one of the indices of refraction in Eq. (29) 
(let us say ni) behaves, near the longitudinal frequency 
coi, a s 

nioc (co—o>i)112 

[see Eq. (11)]. Thus, the real part of n+ has a vertical 
tangent just above coz, while the imaginary part has a 
vertical tangent immediately below coz. The same is 
true of n*. The expression for the reflectivity \R\2 

therefore has the approximate form 

lui 
[i-nl-A{<J>-o>ly
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where m and ki and A are slowly varying real functions 
of frequency. If A is positive, % < 1 , and ki negative, a 
sharp peak is produced very near coz. 

Damping will quickly round off the singularity of 
»i. I t is not surprising that the spike has nearly van­
ished in CdS when the temperature is raised to 20°K. 
When the damping of the exciton becomes sufficiently 
large (comparable to the longitudinal-transverse energy 
splitting) the effects of spatial dispersion on optical 
properties disappear. The surface potential will not, 

however, disappear and will continue to have an in­
fluence on properties such as the reflectivity. The ef­
fect of damping limits the possible observation of spatial 
resonance dispersion effects to relatively strong absorp­
tion lines. 

VI. CONCLUSION 

The present paper has presented an array of experi­
mental reflectivity measurements which have not proved 
amenable to any classical interpretation. The common 
features of the observed anomalies are that exciton 
states which are known to be narrow show unexpectedly 
low peak reflectivities, that the reflectivity minimum 
occurs at too low an energy, that a sharp additional 
reflection maximum occurs very near the longitudinal 
exciton energy, and the reflectivity is larger and less 
rapidly varying than expected at energies slightly above 
the longitudinal energy. These features are all predicted 
for reflectivity taking spatial resonance dispersion into 
account using a new boundary condition. 

The new boundary condition is based upon the exist­
ence of a strong repulsive potential for the exciton near 
the surface of a crystal. The calculations including 
spatial resonance dispersion were made using an ideal­
ized model of the effect of such a potential. The agree­
ment between the experiment and the calculations is 
sufficiently striking that one has confidence in the gen­
eral physics of the boundary condition. In order to 
completely justify the model and to make interesting 
experimental use of the effects, the theory of excitons 
in the surface region must be completed by actually 
solving the Eqs. (26) and (27). 

This complication of the reflectivity spectrum does 
not reduce the utility of ellipsometric and Kramers-
Kronig determinations of optical parameters near sharp 
excitons dispersion peaks. I t must, however, be born 
in mind that such measurements are related to effective 
optical parameters only, and have only an indirect 
theoretical connection to the parameters related to 
optical transmission. (For example, the effective ab­
sorption constant determined from the Kramers-Kronig 
relation and the reflectivity can have either sign.) 

Since band gaps, exciton oscillator strengths, exciton 
masses, and exciton radii are the same (within factors 
of 2) for most I I -VI compounds, the effects of spatial 
resonance dispersion will certainly be observable in the 
reflection spectrum of most I I -VI compounds and prob­
ably in many other materials also. Although the present 
study was restricted theoretically to very simple exciton 
bands, and experimentally, chiefly to uniaxial crystals, 
more complicated systems should be tractable in simple 
geometries. 
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